🔍
Lariat Data
  • 👋Welcome to Lariat Data
  • Overview
    • 💡Video Overview
    • ✨Core Features
    • 🤓Glossary
  • Fundamentals
    • ⚙️Installation & Configuration
    • 📈Working with Datasets and Indicators
    • ☁️Platform Architecture
    • 🔓Your API & Application Keys
  • Integrations (Data Storage)
    • ⏏️S3 Object Storage
    • ⛄Iceberg
    • ⚛️AWS Athena
    • ❄️Snowflake
    • ⏏️GCS Object Storage
    • 🖥️AWS Redshift
    • 🖥️Google BigQuery
  • Integrations (Code)
    • 🐍Python
    • 💫Spark
    • ☕Java/JVM
Powered by GitBook
On this page
  1. Integrations (Code)

Python

Use this integration to extract data sketches and schemas from running Python code in your data pipeline.

Lariat's Python agent profiles datasets generated by common data manipulation libraries such as numpy and pandas

The schemas for these datasets can then be used to define Indicators to expose data quality metrics from your running pipelines.

Installation

pip install lariat-run

Running code under Lariat Data Profiling

If your original script execution looks like

python my_script.py

then run the Lariat data profiler using

lariat-run python my_script.py

PreviousGoogle BigQueryNextSpark

Last updated 1 year ago

🐍